New Cembrane Diterpenes from Taiwanese Soft Coral Sinularia flexibilis

by Kuang-Liang Lo^a), Ashraf Taha Khalil^b), Meng-Hsien Chen^a), and Ya-Ching Shen^{*b})

a) Department of Marine Biotechnology and Resources, National Sun Yat-Sen University,

Kaohsiung 804, Taiwan

b) School of Pharmacy, College of Medicine, National Taiwan University, Jen-Ai Rd. Sec. 1, Taipei 100, Taiwan (phone: +886-2-2312-3456, ext. 62226; fax: +886-2-02-2391-9098; e-mail: ycshen@ntu.edu.tw)

A chemical investigation of the Taiwanese soft coral Sinularia flexibilis has resulted in the isolation of three new cembrane diterpenes designated sinuladiterpenes $G - I$ (1-3, resp.). The structures of 1-3 were determined on the basis of spectroscopic analyses, especially 2D-NMR and HR-ESI-MS.

Introduction. – For the past decades, soft corals have been investigated extensively, and many natural products with interesting biological activities have been discovered [1] [2]. Nevertheless, due to long-term adaptation in different environments, many soft corals have developed unique chemical defense systems to protect themselves. Recently, several 14-membered monocyclic rings, usually called cembrane diterpenes, were isolated from western pacific *Sinularia* $[3-6]$. These novel metabolites, produced also by other soft corals and gorgonians, are assumed to be involved in a defense mechanism against predators such as molluscs, fish, and other vertebrates, and against settlement of microorganisms [7]. Cembrane diterpenes have been shown to possess interesting biological and pharmacological activities, such as cytotoxic $[8-10]$, anti-HIV [11], and calcium-antagonism [12]. Here, we report the isolation and identification of three new cembrane diterpenes, sinuladiterpenes $G-I(1-3, resp.)$, from Sinularia flexibilis, a Taiwanese marine soft coral. Their structures were determined by spectroscopic methods, especially 2D-NMR and HR-ESI-MS.

Results and Discussion. – Extensive fractionation of $CH_2Cl₂/MeOH$ extracts by using normal-phase chromatography afforded sinuladiterpenes $G-I(1-3, resp.)$ from Sinularia flexibilis.

The molecular formula of 1 was determined as $C_{22}H_{32}O_5$ by HR-ESI-MS (m/z) 399.2151 $[M + Na]$ ⁺) and NMR data. The IR absorption bands indicated the presence

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

of OH (3445 cm⁻¹), ester (1742 and 1710 cm⁻¹), and C=C bond (1642 cm⁻¹) functionalities. The ¹H- and ¹³C-NMR-spectroscopic data (*Tables 1* and 2) revealed the presence of a methylidene (δ (H) 6.20, 5.51; δ (C) 124.4) and an ester C=O (δ (C) 169.0) group, and of two trisubstituted C=C bonds $(\delta(H) 5.74, 5.21; \delta(C) 129.6$ (s), 129.5 (d), 127.9 (d), 134.6 (s)). One AcO moiety was detected by the signals at $\delta(H)$ 2.10, and δ (C) 170.7 and 21.0. These functionalities accounted for five degrees of unsaturation, implying the presence of two rings. Spectroscopic analysis of 1 suggested the presence of a 14-membered cembrane ring with one OH and one AcO group, and two $C = C$ bonds. The cembrane structure was confirmed by detailed analysis of the COSY correlations $(H - C(1)/CH_2(2)/H - C(3), H - C(5)/CH_2(6)/H - C(7),$ and $CH_2(9)/CH_2(10)/H-C(11)$ depicted in Fig. 1 [13]. The downfield-shifted signal of a quaternary O-bearing C-atom at $\delta(C)$ 86.1 was assigned to C(12), suggesting 16,12lactonization, thus forming a seven-membered e-lactone ring [14]. This was evidenced from HMBCs (Fig. 1) of the exocyclic CH₂ H-atoms (CH₂(17)) to the CH group (δ (C) 31.8 (C(1)) and 169.0 (C(15))), and between the Me group ($\delta(H)$ 1.32; assigned to Me(20)) and C(12). The O-bearing CH group H-atom signal at $\delta(H)$ 4.68 was assigned to $H - C(3)$ due to its correlation to $C(2)$, and correlations to $C(1)$ and $C(18)$, as well as an olefinic CH group (δ (C) 129.5, C(5)). The latter was attached to a H-atom (δ (H) 5.74) that was correlated to $C(18)$ and to $C(6)$, thereby establishing 4,5-unsaturation. The vinylic Me *singlet* at $\delta(H)$ 1.69 (Me(19)) correlated with the signal for the olefinic CH group (δ (C) 127.9 (C(7))) and a CH₂ group (δ (C) 34.6 (C(9))) pointed to a 7,8unsaturation. The chemical shifts of both C(18) (δ (C) 16.0) and C(19) (δ (C) 16.7) implied (E)-configuration of the C(4)=C(5) and C(7)=C(8) bonds, respectively. The O-bearing CH group (δ (H) 5.46 (H-C(11))) exhibited HMBCs with C(10), C(12), $C(13)$, $C(20)$, as well as the AcO CO group ($\delta(C)$ 170.7), establishing the location of the AcO group at $C(11)$. The NOESY correlations $H-C(1)/H-C(11)$, along with absence of any correlation between $H - C(1)$ and either $H - C(3)$ or $Me(20)$, indicated an *a*-orientation of H-C(11) and HO-C(3), and β -orientation of H-C(3) and $Me(20)$. Thus, the structure of 1 (sinuladiterpene G) was assigned as shown.

Fig. 1. Key COSY (bold line) and HMBC (arrow) correlations of 1

The HR-ESI-MS of 2 exhibited a molecular-ion peak at m/z 415.2093 ($[M + Na]$ ⁺), corresponding to a molecular formula $C_2H_{32}O_6$, which indicates seven degrees of unsaturation. The NMR data (*Tables 1* and 2) disclosed the presence of two Me, seven $CH₂$, two exocyclic CH₂, three O-bearing CH groups, and one AcO group. The Me(20) group ($\delta(H)$ 1.32) showed HMBCs with the characteristic O-bearing quaternary Catom C(12) (δ (C) 87.4) and an O-bearing CH(11) group (δ (C) 74.4), whereas $H - C(11)$ ($\delta(H)$ 6.30) correlated with C(12), C(20), and the ester C=O ($\delta(C)$ 170.8), indicating AcO substitution at C(11). The exocyclic CH₂ H-atom *singlets* at $\delta(H)$ 6.28

	1	$2b$)	3
$H-C(1)$	$2.46 - 2.51$ (<i>m</i>)	$3.45 - 3.50$ (<i>m</i>)	$2.65 - 2.70$ (<i>m</i>)
CH ₂ (2)	$2.05 - 2.11$ (<i>m</i>),	$2.44 - 2.49$ (m) ,	$1.34 - 1.40$ (<i>m</i>),
	$1.60 - 1.65$ (<i>m</i>)	$1.30 - 1.36$ (<i>m</i>)	$1.92 - 1.98$ (<i>m</i>)
$H-C(3)$	4.68 (dd, $J = 11.5, 2.7$)	3.70 $(dd, J=9.5, 3.7)$	2.78 $(dd, J=9.0, 3.6)$
$H - C(5)$ or $CH2(5)$	5.74 $(dd, J=10.7, 6.2)$	4.36 $(t, J=6.6)$	1.75(m), 1.50(m)
CH ₂ (6)	$3.16 - 3.22$ (<i>m</i>),	$2.40 - 2.46$ (<i>m</i>),	$2.07 - 2.13$ (<i>m</i>),
	$2.52 - 2.58$ (<i>m</i>)	$1.92 - 1.98$ (<i>m</i>)	$2.02 - 2.08$ (<i>m</i>)
$H-C(7)$	5.21 $(d, J = 9.3)$	$1.77 - 1.83$ (<i>m</i>)	5.12 $(t, J=5.5)$
CH ₂ (9)	$2.03 - 2.09$ (<i>m</i>),	$1.87 - 1.93$ (<i>m</i>),	$2.48 - 2.54$ (<i>m</i>),
	$1.87 - 1.93$ (<i>m</i>)	$1.82 - 1.87$ (<i>m</i>)	$2.20 - 2.26$ (<i>m</i>)
CH ₂ (10)	$1.58 - 1.63$ (<i>m</i>),	$1.92 - 1.98$ (<i>m</i>),	$2.72 - 2.78$ (m) ,
	$1.40 - 1.45$ (<i>m</i>)	$1.87 - 1.93$ (<i>m</i>)	$2.62 - 2.67$ (<i>m</i>)
$H - C(11)$	5.46 $(d, J = 9.6)$	6.30 $(d, J = 9.0)$	
CH ₂ (13)	$1.98 - 2.02$ (<i>m</i>),	$1.97 - 2.02$ (<i>m</i>),	$2.57 - 2.63$ (<i>m</i>),
	$1.80 - 1.84$ (<i>m</i>)	$1.82 - 1.87(m)$	$2.12 - 2.18$ (<i>m</i>)
CH ₂ (14)	$1.94 - 2.00$ (<i>m</i>),	$1.95 - 2.00$ (m) ,	$1.90 - 1.95$ (<i>m</i>),
	$1.20 - 1.25$ (<i>m</i>)	$1.84 - 1.90(m)$	$1.57 - 1.63$ (<i>m</i>)
CH ₂ (17)	6.20 (s) , 5.51 (s)	6.28 (s), 5.47 (s)	6.30 (s) , 5.48 (s)
Me(18)	1.66 (s)	$5.17(s)$, $5.01(s)$	1.26 (s)
Me(19)	1.69(s)	1.25(s)	1.65(s)
Me(20)	1.32(s)	1.32(s)	1.33(s)
$MeO-C(16)$			3.75(s)
Ac	2.10(s)	2.11(s)	

Table 1. ¹H-NMR Data (CDCl₃, 300 MHz) of Compounds $1-3^a$)

and 5.47 were assigned to CH₂(17) based on their HMBCs to C(1) (δ (C) 32.0) and $C(16)$ (δ (C) 169.2). The relatively upfield-shifted exocyclic CH₂ H-atoms resonating at $\delta(H)$ 5.17 and 5.01 correlated with a quaternary olefin C-atom at $\delta(C)$ 150.5 (C(4)), and with two O-bearing CH groups at $\delta(C)$ 74.1 (C(3)) and $\delta(C)$ 81.3 (C(5)), establishing the presence of a $C(4) = C(18)$ bond. The HMQC spectrum indicated that H-C(3), resonating at δ (H) 3.70, correlated to C(4) as well as to C(1) and C(5). The Me(19) group (δ (H) 1.25) correlated with a quaternary O-bearing C-atom (δ (C) 86.1 $(C(8))$) and with two CH₂ groups (δ (C) 38.0 (C(7)) and 37.6 (C(9))). The downfield shift of both $C(5)$ and $C(8)$, together with consideration of seven degrees of unsaturation, required the presence of an ether linkage between $C(5)$ and $C(8)$. The proposed 2,2,5-trisubstituted tetrahydrofuran unit was substantiated by HMBCs between $H - C(5)/C(6)$, $C(7)$, and, most significantly between $H - C(5)$ and $C(8)$. The NOESY correlations $H - C(1)/H - C(1)$, $H - C(5)$; $H - C(5)/M e(19)$; and $H-C(3)/H_{\beta}-C(2)$ evidenced the *a*-orientation of $H-C(5)$, $H-C(11)$, and Me(19), as well as β -orientation of H – C(3) (*Fig.* 2). Thus, the structure of 2, sinuladiterpene H, was unambiguously elucidated as shown.

The molecular formula $C_{21}H_{32}O_5$ was established for 3 by HR-ESI-MS, which showed a pseudo-molecular-ion peak at m/z 387.2150 ([$M + Na$]⁺). The IR spectrum displayed absorption bands for OH (3421 cm^{-1}) , conjugated ester (1711 cm^{-1}) , and C=C (1634 cm⁻¹) functionalities. The ¹H-NMR spectroscopic data (*Tables 1* and 2)

	1	$2^b)$	3
C(1)	31.8 (d)	32.0 (d)	36.5 (d)
C(2)	39.1 (t)	29.2(t)	25.2(t)
C(3)	66.2(d)	74.1 (d)	59.5 (d)
C(4)	129.6(s)	150.5(s)	60.7 (s)
C(5)	129.5 (d)	81.3(d)	36.1 (t)
C(6)	26.8(t)	31.7 (t)	22.9(t)
C(7)	127.9(d)	38.0 (t)	126.3(d)
C(8)	134.6 (s)	86.1(s)	134.6 (s)
C(9)	34.6 (t)	37.6 (t)	31.6 (t)
C(10)	27.5(t)	28.6(t)	34.3 (t)
C(11)	71.4 (d)	74.4 (d)	213.7(s)
C(12)	86.1(s)	87.4(s)	78.8 (s)
C(13)	33.0 (t)	33.8 (t)	31.6 (t)
C(14)	29.3(t)	33.3 (t)	36.9 (t)
C(15)	145.0 (s)	144.7 (s)	142.3 (s)
C(16)	169.0(s)	169.2 (s)	167.5(s)
C(17)	124.4 (t)	123.7 (t)	124.5 (t)
C(18)	16.0 (q)	114.6 (t)	18.2 (q)
C(19)	16.7 (q)	17.9 (q)	17.2 (q)
C(20)	23.7 (q)	23.8 (q)	25.7(q)
$MeO-C(16)$			52.1 (q)
Ac	170.7(s)	170.8(s)	
	21.0(q)	21.1 (q)	

Table 2. ¹³C-NMR Data (CDCl₃, 75 MHz) of Compounds $1-3^a$)

^a) Assignments were supported by DEPT, HMQC, and HMBC data. ^b) Recorded at 125 MHz.

Fig. 2. Key NOESY correlations of 2

indicated the presence of a trisubstituted C=C bond (δ (H) 5.12, H-C(7)), of a terminal CH₂ group (δ (H) 6.30, 5.48 (CH₂(17))), three Me groups (δ (H) 1.26, 1.33; one olefinic at $\delta(H)$ 1.65), and one MeO group ($\delta(H)$ 3.75). The ¹³C-NMR revealed the presence of a ketone C=O (δ (C) 213.7), and α , β -unsaturated ester C=O group (δ (C) 167.5), a C=C bond (δ (C) 134.6, 126.3), a terminal CH₂ group (δ (C) 124.5), three Me groups (δ (C) 17.2, 18.2, 25.7), and a MeO group (δ (C) 52.1). The O-bearing quaternary C-atom (δ (C) 60.7 (C(4))) and O-bearing CH group (δ (C) 59.5) pointed to an oxirane ring, which was further supported by the signal of an O-bearing CH group H-atom $(\delta(H)$ 2.78 $(H - C(3))$). The two C=O groups, one C=C bond, terminal CH₂ group, and the epoxy ring accounted for only five degrees of unsaturation, implying the necessity for an additional ring. In the HMBC, the terminal CH₂ H-atoms correlated with C(1) and the ester C=O, whereas the Me(20) group ($\delta(H)$ 1.33) correlated with a C=O (δ (C) 213.7 (C(11))), CH₂ (δ (C) 31.6 (C(13))) as well as with an O-bearing quaternary C-atom (δ (C) 78.8 (C(12))), establishing 11-oxo substitution. The Me group (δ (H) 1.26) correlated with an epoxy CH C-atom (δ (C) 59.5 (C(3))), CH₂ (δ (C) 36.1 (C(5))), and epoxy C-atom (δ (C) 60.7 (C(4))), indicating 3,4-epoxy ring. The third Me group ($\delta(H)$ 1.65), assigned as Me(19), correlated to the two olefinic C-atoms $(\delta(C)$ 134.6, 126.3 (C(8) and C(7))) and a CH₂ group ($\delta(C)$ 31.6 (C(9))), pointing to a 7,8-unsaturation. The COSY correlations $H - C(1)/CH_2(2)/H - C(3)$ and $CH_2(6)/H$ H-C(7), along with EI-MS fragment ion at m/z 280 ([M – side chain]⁺) and m/z 85 $([C_4H_5O_2]^+)$, confirmed the proposed structure. The terminal CH₂ group was assigned to C(17) on the basis of an HMBC CH₂(17)/C(1), whereas correlation of both CH₂(17) and MeO (δ (H) 3.75) to the ester C=O (δ (C) 167.5 (C(16))) allowed the location of the methyl ester group at $C(15)$. The relative configuration of 1 was deduced from NOESY correlations and biosynthetic considerations [15]. The NOESY correlations $H - C(3)/Me(18)$, along with absence of mutual NOE interactions $H - C(1)/H - C(3)$ and $H - C(1)/Me(20)$, were in agreement with the β -orientation of $H - C(3)$, Me(18), and Me(20), as well as with an α -orientation of the oxirane ring, and of the OH group at $C(12)$. Based on these findings, the structure of 3, sinuladiterpene I, was established as shown.

A plausible biogenetic pathway for these new compounds is proposed as displayed in the Scheme. Geranylgeranyl diphosphate (GGPP) most likely serves as precursor of

cembranoids 1 – 3. Cyclization of GGPP, followed by oxidation, yields an acid derivative a, which may lead to compound 1. Epoxidation of acid a, followed by hydration, lactonization, and acylation, could furnish compounds 2 and 3.

Experimental Part

General. Column chromatography (CC): silica gel 60 (SiO₂; Merck). Prep. TLC: pre-coated silica gel plates (Kieselgel 60 F-254, 1 mm, Merck). Sephadex LH-20 (Amersham Pharmacia Biotech AB, Uppsala, Sweden) was used for separation. LiChrospher® Si 60 (5 μ m, 250-10, Merck) was used for NP-HPLC (Hitachi). Optical rotations: JASCO DIP-1000 polarimeter. IR and UV spectra: Hitachi T-2001 and Hitachi U-3210 spectrophotometers, resp. ¹H- and ¹³C-NMR, COSY, HMQC, HMBC, and NOESY spectra: *Bruker FT-300* spectrometer or on a *Varian Unity INOVA 500* FT-NMR at 500 MHz for ¹H and 125 MHz for ¹³C, using TMS as internal standard; the chemical shifts are given in δ values [ppm] and coupling constants in Hz. EI-MS and FAB-MS: VG Quattro 5022 mass spectrometer. HR-ESI-MS: JEOL JMS-SX 102 spectrometer.

Animal Material. The soft coral Sinularia flexibilis was collected at Green Island, Taiwan, in April 2004 , at a depth of $10-15$ m and immediately stored in a freezer until extraction. A voucher specimen (GSC-II-10) was deposited with the School of Pharmacy, National Taiwan University, Taipei, Taiwan.

Extraction and Isolation. The wet organism (4 kg) was sliced and extracted with CH₂Cl₂/MeOH 1:1 three times using a stirrer, and the combined extracts were evaporated in vacuo. The resulting crude extract (32 g) was separated by flash chromatography ($SiO₂$; hexane/AcOEt/MeOH 100 : 0 : 0 to 0 : 3 : 1) to furnish 15 fractions, Frs. $1 - 15$. Fr. 12 (1.8 g) was separated on a Sephadex column with CH₂Cl₂/MeOH 1:1 into three fractions, Frs. $12-A-12-C$. Crystallization of Fr. 12-A gave 11-episinulariolide acetate (990 mg). Fr. 12-B (220 mg) was chromatographed on a $SiO₂$ column with a gradient of hexane/AcOEt $(20:1 \text{ to } 2:1)$ to produce eight fractions, Frs. $12-B-1-12-B-8$. Fr. 12-B-3 yielded 11-dehydrosinulariolide (2 mg) . Fr. 12-B-4 was further separated by NP-HPLC using hexane/CH₂Cl₂/MeOH 25:15:1 to yield 3 (14 mg). Fr. 13 (1.2 g) was similarly separated on a Sephadex column using CH₂Cl₂/MeOH 1:1 to give three fractions, Frs. 13-A – 13-C. Fr. 13-C (300 mg) was chromatographed on a SiO₂ column with a gradient of hexane/AcOEt/MeOH $(100:0:0$ to $0:5:1)$ to yield eleven fractions, Frs. 13-C-1-13-C-11. $F13-C-10$ (58 mg) was repeatedly subjected to NP-HPLC with hexane/CH₂Cl₂/MeOH (15:15:1, then $25:20:10$) to furnish 1 (8 mg) and 2 (4 mg).

Sinuladiterpene G $((-1S*,3S*,4E,7E,11R*,12S*)-3-Hydroxy-4,8,12-trimethyl-15-methylidene-14-14)$ oxo-13-oxabicyclo[10.3.2]heptadeca-4,7-dien-11-yl Acetate; 1). Colorless amorphous solid. $[a]_0^{24}$ = -13.5 (c = 0.1, MeOH). IR (CH₂Cl₂): 3445 (OH), 2930 (CH), 1742 (ester), 1710 (C=O), 1642 (C=C), 1239, 1020, 759. ¹H- and ¹³C-NMR (CDCl₃): see *Tables 1* and 2, resp. HR-EI-MS: 399.2151 $(C_{22}H_{32}NaO_5^+;$ calc. 399.2147).

Sinuladiterpene H (=(1S*,3S*,5S*,8R*,11R*,12S*)-3-Hydroxy-8,12-dimethyl-4,15-dimethylidene-14-oxo-13,18-dioxatricyclo[10.3.2.1^{5,8}]octadec-11-yl Acetate; 2). Colorless amorphous solid. $[a]_0^{24}$ = -15.6 (c = 0.1, MeOH). IR (CH₂Cl₂): 3443 (OH), 2950 (CH), 1736 (ester), 1709 (C=O), 1640 $(C=C)$. ¹H- and ¹³C- NMR (CDCl₃): see *Tables 1* and 2, resp. HR-EI-MS: 415.2093 (C₂₂H₃₂NaO₆⁺; calc. 415.2093).

Sinuladiterpene I (= Methyl 2-[(1S*,3S*,6S*,10E,14S*)-6-Hydroxy-6,10,14-trimethyl-7-oxo-15-oxabicyclo[12.1.0]pentadec-10-en-3-yl]prop-2-enoate; 3). Colorless amorphous solid. [α] $^{24}_{D}$ = +68.3 (c = 0.1, MeOH). IR (CH₂Cl₂): 3421 (OH), 2926 (CH), 1711 (C=O), 1634 (C=C), 1236 (C–O), 1022, 756. ¹Hand ¹³C-NMR (CDCl₃): see *Tables 1* and 2, resp. HR-ESI-MS: 387.2150 ($C_{21}H_{32}NaO_5^+$; calc. 387.2147).

We thank the National Science Council, Taipei, Taiwan, for financial support (grant No. NSC 98- 2113-M-002-002-MY3). Partial financial support from Asia-Pacific Ocean Research Center, National Sun Yat-Sen University (grant no. 95C 0312), is gratefully acknowledged.

REFERENCES

- [1] J. W. Blunt, B. R. Copp, W.-P. Hu, M. H. G. Munro, P. T. Northcote, M. R. Prinsep, Nat. Prod. Rep. 2008, 25, 35, and refs. cit. in previous reviews.
- [2] Y. Nakao, S. Yoshida, S. Matsunaga, N. Fusetani, J. Nat. Prod. 2003, 66, 524.
- [3] T. Wen, Y. Ding, Z. Deng, L. van Ofwegen, P. Proksch, W. Lin, J. Nat. Prod. 2008, 71, 1133.
- [4] J.-H. Su, A. F. Ahmed, P.-J. Sung, C.-H. Chao, Y.-H. Kuo, J.-H. Sheu, J. Nat. Prod. 2006, 69, 1134.
- [5] H. N. Kamel, D. Ferreira, L. F. Garcia-Fernandez, M. Slattery, J. Nat. Prod. 2007, 70, 1223.
- [6] Y. Lu, C.-Y. Huang, Y.-F. Lin, Z.-H. Wen, J.-H. Su, Y.-H. Kuo, M. Y. Chiang, J.-H. Sheu, J. Nat. Prod. 2008, 71, 1754.
- [7] J. C. Coll, I. R. Price, G. M. König, B. F. Bowden, *Mar. Biol.* 1987, 96, 129.
- [8] F. J. Schmitz, K. H. Hollenbeak, R. S. Prasad, *Tetrahedron Lett.* **1979**, 20, 3387.
- [9] F. Reyes, A. Ardá, R. Martín, R. Fernández, A. Rueda, D. Montalvo, C. Gómez, C. Jiménez, J. Rodríguez, J. M. Sánchez-Puelles, J. Nat. Prod. 2004, 67, 1190.
- [10] R.-S. Hou, C.-Y. Duh, M. Y. Chiang, C.-N. Lin, J. Nat. Prod. 1995, 58, 1126.
- [11] M. A. Rashid, K. R. Gustafson, M. R. Boyd, J. Nat. Prod. 2000, 63, 531.
- [12] J. Kobayashi, Y. Ohizumi, H. Nakamura, T. Yamakado, T. Matsuzaki, Y. Hirata, Experientia 1983, 39, 67.
- [13] J. Su, R. Yang, Y. Kuang, L. Zeng, J. Nat. Prod. 2000, 63, 1543.
- [14] N. S. Reddy, T. V. Goud, Y. Venkateswarlu, J. Nat. Prod. 2002, 65, 1059.
- [15] K. Mori, S. Suzuki, K. Iguchi, Y. Yamada, Chem. Lett. 1983, 12, 1515, and refs. cit. therein.

Received November 4, 2009